第2章 索引
1 2 3 4
   | import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col='ID') df.head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
一、单级索引
1. loc方法、iloc方法、[]操作符
最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点
(a)loc方法(注意:所有在loc中使用的切片全部包含右端点!)
① 单行索引:
School          S_1
Class           C_1
Gender            M
Address    street_2
Height          186
Weight           82
Math           87.2
Physics          B+
Name: 1103, dtype: object
② 多行索引:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 2304 | 
      S_2 | 
      C_3 | 
      F | 
      street_6 | 
      164 | 
      81 | 
      95.5 | 
      A- | 
    
  
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1304 | 
      S_1 | 
      C_3 | 
      M | 
      street_2 | 
      195 | 
      70 | 
      85.2 | 
      A | 
    
    
      | 1305 | 
      S_1 | 
      C_3 | 
      F | 
      street_5 | 
      187 | 
      69 | 
      61.7 | 
      B- | 
    
    
      | 2101 | 
      S_2 | 
      C_1 | 
      M | 
      street_7 | 
      174 | 
      84 | 
      83.3 | 
      C | 
    
    
      | 2102 | 
      S_2 | 
      C_1 | 
      F | 
      street_6 | 
      161 | 
      61 | 
      50.6 | 
      B+ | 
    
    
      | 2103 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      157 | 
      61 | 
      52.5 | 
      B- | 
    
  
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166 | 
      82 | 
      48.7 | 
      B | 
    
    
      | 2401 | 
      S_2 | 
      C_4 | 
      F | 
      street_2 | 
      192 | 
      62 | 
      45.3 | 
      A | 
    
    
      | 2305 | 
      S_2 | 
      C_3 | 
      M | 
      street_4 | 
      187 | 
      73 | 
      48.9 | 
      B | 
    
    
      | 2304 | 
      S_2 | 
      C_3 | 
      F | 
      street_6 | 
      164 | 
      81 | 
      95.5 | 
      A- | 
    
    
      | 2303 | 
      S_2 | 
      C_3 | 
      F | 
      street_7 | 
      190 | 
      99 | 
      65.9 | 
      C | 
    
  
 
③ 单列索引:
1
   | df.loc[:,'Height'].head()
   | 
 
ID
1101    173
1102    192
1103    186
1104    167
1105    159
Name: Height, dtype: int64
④ 多列索引:
1
   | df.loc[:,['Height','Math']].head()
   | 
 
  
    
       | 
      Height | 
      Math | 
    
    
      | ID | 
       | 
       | 
    
  
  
    
      | 1101 | 
      173 | 
      34.0 | 
    
    
      | 1102 | 
      192 | 
      32.5 | 
    
    
      | 1103 | 
      186 | 
      87.2 | 
    
    
      | 1104 | 
      167 | 
      80.4 | 
    
    
      | 1105 | 
      159 | 
      84.8 | 
    
  
 
1
   | df.loc[:,'Height':'Math'].head()
   | 
 
  
    
       | 
      Height | 
      Weight | 
      Math | 
    
    
      | ID | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      173 | 
      63 | 
      34.0 | 
    
    
      | 1102 | 
      192 | 
      73 | 
      32.5 | 
    
    
      | 1103 | 
      186 | 
      82 | 
      87.2 | 
    
    
      | 1104 | 
      167 | 
      81 | 
      80.4 | 
    
    
      | 1105 | 
      159 | 
      64 | 
      84.8 | 
    
  
 
⑤ 联合索引:
1
   | df.loc[1102:2401:3,'Height':'Math'].head()
   | 
 
  
    
       | 
      Height | 
      Weight | 
      Math | 
    
    
      | ID | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      192 | 
      73 | 
      32.5 | 
    
    
      | 1105 | 
      159 | 
      64 | 
      84.8 | 
    
    
      | 1203 | 
      160 | 
      53 | 
      58.8 | 
    
    
      | 1301 | 
      161 | 
      68 | 
      31.5 | 
    
    
      | 1304 | 
      195 | 
      70 | 
      85.2 | 
    
  
 
⑥ 函数式索引:
1 2
   | df.loc[lambda x:x['Gender']=='M'].head()
 
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
  
 
1 2 3
   | def f(x):     return [1101,1103] df.loc[f]
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
  
 
⑦ 布尔索引(将重点在第2节介绍)
1
   | df.loc[df['Address'].isin(['street_7','street_4'])].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 1303 | 
      S_1 | 
      C_3 | 
      M | 
      street_7 | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | 2101 | 
      S_2 | 
      C_1 | 
      M | 
      street_7 | 
      174 | 
      84 | 
      83.3 | 
      C | 
    
  
 
1
   | df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 1303 | 
      S_1 | 
      C_3 | 
      M | 
      street_7 | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | 2101 | 
      S_2 | 
      C_1 | 
      M | 
      street_7 | 
      174 | 
      84 | 
      83.3 | 
      C | 
    
  
 
小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
(b)iloc方法(注意与loc不同,切片右端点不包含)
① 单行索引:
School          S_1
Class           C_1
Gender            F
Address    street_2
Height          167
Weight           81
Math           80.4
Physics          B-
Name: 1104, dtype: object
② 多行索引:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
③ 单列索引:
ID
1101    street_1
1102    street_2
1103    street_2
1104    street_2
1105    street_4
Name: Address, dtype: object
④ 多列索引:
  
    
       | 
      Physics | 
      Weight | 
      Address | 
      Class | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      A+ | 
      63 | 
      street_1 | 
      C_1 | 
    
    
      | 1102 | 
      B+ | 
      73 | 
      street_2 | 
      C_1 | 
    
    
      | 1103 | 
      B+ | 
      82 | 
      street_2 | 
      C_1 | 
    
    
      | 1104 | 
      B- | 
      81 | 
      street_2 | 
      C_1 | 
    
    
      | 1105 | 
      B+ | 
      64 | 
      street_4 | 
      C_1 | 
    
  
 
⑤ 混合索引:
1
   | df.iloc[3::4,7::-2].head()
   | 
 
  
    
       | 
      Physics | 
      Weight | 
      Address | 
      Class | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1104 | 
      B- | 
      81 | 
      street_2 | 
      C_1 | 
    
    
      | 1203 | 
      A+ | 
      53 | 
      street_6 | 
      C_2 | 
    
    
      | 1302 | 
      A- | 
      57 | 
      street_1 | 
      C_3 | 
    
    
      | 2101 | 
      C | 
      84 | 
      street_7 | 
      C_1 | 
    
    
      | 2105 | 
      A | 
      81 | 
      street_4 | 
      C_1 | 
    
  
 
⑥ 函数式索引:
1
   | df.iloc[lambda x:[3]].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
  
 
小节:由上所述,iloc中接收的参数只能为整数或整数列表,不能使用布尔索引
(c) []操作符
如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中的浮点[]并不是进行位置比较,而是值比较,非常特殊
(c.1)Series的[]操作
① 单元素索引:
1 2 3
   | s = pd.Series(df['Math'],index=df.index) s[1101]
 
   | 
 
34.0
② 多行索引:
ID
1101    34.0
1102    32.5
1103    87.2
1104    80.4
Name: Math, dtype: float64
③ 函数式索引:
1 2
   | s[lambda x: x.index[16::-6]]
 
   | 
 
ID
2102    50.6
1301    31.5
1105    84.8
Name: Math, dtype: float64
④ 布尔索引:
ID
1103    87.2
1104    80.4
1105    84.8
1201    97.0
1302    87.7
1304    85.2
2101    83.3
2205    85.4
2304    95.5
Name: Math, dtype: float64
(c.2)DataFrame的[]操作
① 单行索引:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
  
 
1 2
   | row = df.index.get_loc(1102) df[row:row+1]
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
  
 
② 多行索引:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
③ 单列索引:
ID
1101    S_1
1102    S_1
1103    S_1
1104    S_1
1105    S_1
Name: School, dtype: object
④ 多列索引:
1
   | df[['School','Math']].head()
   | 
 
  
    
       | 
      School | 
      Math | 
    
    
      | ID | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      34.0 | 
    
    
      | 1102 | 
      S_1 | 
      32.5 | 
    
    
      | 1103 | 
      S_1 | 
      87.2 | 
    
    
      | 1104 | 
      S_1 | 
      80.4 | 
    
    
      | 1105 | 
      S_1 | 
      84.8 | 
    
  
 
⑤函数式索引:
1
   | df[lambda x:['Math','Physics']].head()
   | 
 
  
    
       | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
    
  
  
    
      | 1101 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      84.8 | 
      B+ | 
    
  
 
⑥ 布尔索引:
1
   | df[df['Gender']=='F'].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | 1204 | 
      S_1 | 
      C_2 | 
      F | 
      street_5 | 
      162 | 
      63 | 
      33.8 | 
      B | 
    
  
 
小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
2. 布尔索引
(a)布尔符号:’&’,’|’,’~’:分别代表和and,或or,取反not
1
   | df[(df['Gender']=='F')&(df['Address']=='street_2')].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 2401 | 
      S_2 | 
      C_4 | 
      F | 
      street_2 | 
      192 | 
      62 | 
      45.3 | 
      A | 
    
    
      | 2404 | 
      S_2 | 
      C_4 | 
      F | 
      street_2 | 
      160 | 
      84 | 
      67.7 | 
      B | 
    
  
 
1
   | df[(df['Math']>85)|(df['Address']=='street_7')].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
    
      | 1302 | 
      S_1 | 
      C_3 | 
      F | 
      street_1 | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | 1303 | 
      S_1 | 
      C_3 | 
      M | 
      street_7 | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | 1304 | 
      S_1 | 
      C_3 | 
      M | 
      street_2 | 
      195 | 
      70 | 
      85.2 | 
      A | 
    
  
 
1
   | df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | 1204 | 
      S_1 | 
      C_2 | 
      F | 
      street_5 | 
      162 | 
      63 | 
      33.8 | 
      B | 
    
    
      | 1205 | 
      S_1 | 
      C_2 | 
      F | 
      street_6 | 
      167 | 
      63 | 
      68.4 | 
      B- | 
    
  
 
loc和[]中相应位置都能使用布尔列表选择:
1 2 3
   | df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()
 
 
   | 
 
  
    
       | 
      Physics | 
    
    
      | ID | 
       | 
    
  
  
    
      | 1103 | 
      B+ | 
    
    
      | 1104 | 
      B- | 
    
    
      | 1105 | 
      B+ | 
    
    
      | 1201 | 
      A- | 
    
    
      | 1202 | 
      B- | 
    
  
 
(b) isin方法
1
   | df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 2105 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      170 | 
      81 | 
      34.2 | 
      A | 
    
    
      | 2203 | 
      S_2 | 
      C_2 | 
      M | 
      street_4 | 
      155 | 
      91 | 
      73.8 | 
      A+ | 
    
  
 
1 2 3
   |  df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
 
 
  | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 2105 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      170 | 
      81 | 
      34.2 | 
      A | 
    
    
      | 2203 | 
      S_2 | 
      C_2 | 
      M | 
      street_4 | 
      155 | 
      91 | 
      73.8 | 
      A+ | 
    
  
 
3. 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现:
1 2 3 4 5 6 7 8 9
   | display(df.at[1101,'School']) display(df.loc[1101,'School']) display(df.iat[0,0]) display(df.iloc[0,0])
 
 
 
 
 
   | 
 
'S_1'
'S_1'
'S_1'
'S_1'
4. 区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
(a)利用interval_range方法
1 2
   | pd.interval_range(start=0,end=5)
 
   | 
 
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
              closed='right',
              dtype='interval[int64]')
1 2
   | pd.interval_range(start=0,periods=8,freq=5)
 
   | 
 
IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
              closed='right',
              dtype='interval[int64]')
(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
1 2 3
   | math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
  math_interval.head()
   | 
 
ID
1101      (0, 40]
1102      (0, 40]
1103    (80, 100]
1104    (80, 100]
1105    (80, 100]
Name: Math, dtype: category
Categories (4, interval[int64]): [(0, 40] < (40, 60] < (60, 80] < (80, 100]]
(c)区间索引的选取
1 2 3
   | df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\             .reset_index().set_index('Math_interval') df_i.head()
   | 
 
  
    
       | 
      ID | 
      Math | 
    
    
      | Math_interval | 
       | 
       | 
    
  
  
    
      | (0, 40] | 
      1101 | 
      34.0 | 
    
    
      | (0, 40] | 
      1102 | 
      32.5 | 
    
    
      | (80, 100] | 
      1103 | 
      87.2 | 
    
    
      | (80, 100] | 
      1104 | 
      80.4 | 
    
    
      | (80, 100] | 
      1105 | 
      84.8 | 
    
  
 
  
    
       | 
      ID | 
      Math | 
    
    
      | Math_interval | 
       | 
       | 
    
  
  
    
      | (60, 80] | 
      1202 | 
      63.5 | 
    
    
      | (60, 80] | 
      1205 | 
      68.4 | 
    
    
      | (60, 80] | 
      1305 | 
      61.7 | 
    
    
      | (60, 80] | 
      2104 | 
      72.2 | 
    
    
      | (60, 80] | 
      2202 | 
      68.5 | 
    
  
 
1
   | df_i.loc[[65,90]].head()
   | 
 
  
    
       | 
      ID | 
      Math | 
    
    
      | Math_interval | 
       | 
       | 
    
  
  
    
      | (60, 80] | 
      1202 | 
      63.5 | 
    
    
      | (60, 80] | 
      1205 | 
      68.4 | 
    
    
      | (60, 80] | 
      1305 | 
      61.7 | 
    
    
      | (60, 80] | 
      2104 | 
      72.2 | 
    
    
      | (60, 80] | 
      2202 | 
      68.5 | 
    
  
 
如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:
1 2
   |  df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
 
  | 
 
  
    
       | 
      ID | 
      Math | 
    
    
      | Math_interval | 
       | 
       | 
    
  
  
    
      | (80, 100] | 
      1103 | 
      87.2 | 
    
    
      | (80, 100] | 
      1104 | 
      80.4 | 
    
    
      | (80, 100] | 
      1105 | 
      84.8 | 
    
    
      | (80, 100] | 
      1201 | 
      97.0 | 
    
    
      | (60, 80] | 
      1202 | 
      63.5 | 
    
  
 
二、多级索引
1. 创建多级索引
(a)通过from_tuple或from_arrays
① 直接创建元组
1 2 3
   | tuples = [('A','a'),('A','b'),('B','a'),('B','b')] mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower')) mul_index
  | 
 
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])
1
   | pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
  | 
 
  
    
       | 
       | 
      Score | 
    
    
      | Upper | 
      Lower | 
       | 
    
  
  
    
      | A | 
      a | 
      perfect | 
    
    
      | b | 
      good | 
    
    
      | B | 
      a | 
      fair | 
    
    
      | b | 
      bad | 
    
  
 
② 利用zip创建元组
1 2 3 4 5
   | L1 = list('AABB') L2 = list('abab') tuples = list(zip(L1,L2)) mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower')) pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
  | 
 
  
    
       | 
       | 
      Score | 
    
    
      | Upper | 
      Lower | 
       | 
    
  
  
    
      | A | 
      a | 
      perfect | 
    
    
      | b | 
      good | 
    
    
      | B | 
      a | 
      fair | 
    
    
      | b | 
      bad | 
    
  
 
③ 通过Array创建
1 2 3
   | arrays = [['A','a'],['A','b'],['B','a'],['B','b']] mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower')) pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
   | 
 
  
    
       | 
       | 
      Score | 
    
    
      | Upper | 
      Lower | 
       | 
    
  
  
    
      | A | 
      a | 
      perfect | 
    
    
      | b | 
      good | 
    
    
      | B | 
      a | 
      fair | 
    
    
      | b | 
      bad | 
    
  
 
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])
(b)通过from_product
1 2 3 4
   | L1 = ['A','B'] L2 = ['a','b'] pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
 
   | 
 
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])
(c)指定df中的列创建(set_index方法)
1 2
   | df_using_mul = df.set_index(['Class','Address']) df_using_mul.head()
   | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_1 | 
      street_1 | 
      S_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | street_4 | 
      S_1 | 
      F | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
2. 多层索引切片
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_1 | 
      street_1 | 
      S_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | street_4 | 
      S_1 | 
      F | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
(a)一般切片
1 2 3 4 5 6
   | 
 
 
  df_using_mul.sort_index().loc['C_2','street_5']
 
 
  | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_2 | 
      street_5 | 
      S_1 | 
      M | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
    
      | street_5 | 
      S_1 | 
      F | 
      162 | 
      63 | 
      33.8 | 
      B | 
    
    
      | street_5 | 
      S_2 | 
      M | 
      193 | 
      100 | 
      39.1 | 
      B | 
    
  
 
1 2 3 4
   | 
  df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
 
 
  | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_2 | 
      street_6 | 
      S_1 | 
      M | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | street_6 | 
      S_1 | 
      F | 
      167 | 
      63 | 
      68.4 | 
      B- | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      194 | 
      77 | 
      68.5 | 
      B+ | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      183 | 
      76 | 
      85.4 | 
      B | 
    
    
      | C_3 | 
      street_1 | 
      S_1 | 
      F | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | street_2 | 
      S_1 | 
      M | 
      195 | 
      70 | 
      85.2 | 
      A | 
    
    
      | street_4 | 
      S_1 | 
      M | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | street_4 | 
      S_2 | 
      F | 
      157 | 
      78 | 
      72.3 | 
      B+ | 
    
    
      | street_4 | 
      S_2 | 
      M | 
      187 | 
      73 | 
      48.9 | 
      B | 
    
  
 
1 2
   | df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
 
  | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_2 | 
      street_7 | 
      S_2 | 
      F | 
      194 | 
      77 | 
      68.5 | 
      B+ | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      183 | 
      76 | 
      85.4 | 
      B | 
    
    
      | C_3 | 
      street_1 | 
      S_1 | 
      F | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | street_2 | 
      S_1 | 
      M | 
      195 | 
      70 | 
      85.2 | 
      A | 
    
    
      | street_4 | 
      S_1 | 
      M | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
  
 
(b)第一类特殊情况:由元组构成列表
1 2
   | df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
 
  | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_2 | 
      street_7 | 
      S_2 | 
      F | 
      194 | 
      77 | 
      68.5 | 
      B+ | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      183 | 
      76 | 
      85.4 | 
      B | 
    
    
      | C_3 | 
      street_2 | 
      S_1 | 
      M | 
      195 | 
      70 | 
      85.2 | 
      A | 
    
  
 
(c)第二类特殊情况:由列表构成元组
1 2
   | df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
 
   | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_2 | 
      street_4 | 
      S_1 | 
      F | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | street_4 | 
      S_2 | 
      M | 
      155 | 
      91 | 
      73.8 | 
      A+ | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      194 | 
      77 | 
      68.5 | 
      B+ | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      183 | 
      76 | 
      85.4 | 
      B | 
    
    
      | C_3 | 
      street_4 | 
      S_1 | 
      M | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | street_4 | 
      S_2 | 
      F | 
      157 | 
      78 | 
      72.3 | 
      B+ | 
    
    
      | street_4 | 
      S_2 | 
      M | 
      187 | 
      73 | 
      48.9 | 
      B | 
    
    
      | street_7 | 
      S_1 | 
      M | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | street_7 | 
      S_2 | 
      F | 
      190 | 
      99 | 
      65.9 | 
      C | 
    
  
 
3. 多层索引中的slice对象
1 2 3 4 5 6
   | L1,L2 = ['A','B','C'],['a','b','c'] mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower')) L3,L4 = ['D','E','F'],['d','e','f'] mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small')) df_s = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2) df_s
   | 
 
  
    
       | 
      Big | 
      D | 
      E | 
      F | 
    
    
       | 
      Small | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
    
    
      | Upper | 
      Lower | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | A | 
      a | 
      0.055073 | 
      0.046398 | 
      0.433773 | 
      0.585803 | 
      0.758589 | 
      0.021143 | 
      0.388852 | 
      0.086923 | 
      0.249213 | 
    
    
      | b | 
      0.581040 | 
      0.619700 | 
      0.269257 | 
      0.498630 | 
      0.172987 | 
      0.373643 | 
      0.401451 | 
      0.608396 | 
      0.517261 | 
    
    
      | c | 
      0.734722 | 
      0.664146 | 
      0.715707 | 
      0.422658 | 
      0.702079 | 
      0.489320 | 
      0.987386 | 
      0.034874 | 
      0.952730 | 
    
    
      | B | 
      a | 
      0.907978 | 
      0.703347 | 
      0.475559 | 
      0.005389 | 
      0.784927 | 
      0.072212 | 
      0.749511 | 
      0.398780 | 
      0.524044 | 
    
    
      | b | 
      0.690069 | 
      0.544365 | 
      0.132101 | 
      0.149513 | 
      0.153937 | 
      0.142433 | 
      0.873528 | 
      0.619124 | 
      0.815529 | 
    
    
      | c | 
      0.197430 | 
      0.976303 | 
      0.137348 | 
      0.981766 | 
      0.028390 | 
      0.479319 | 
      0.621560 | 
      0.818642 | 
      0.379542 | 
    
    
      | C | 
      a | 
      0.491799 | 
      0.649872 | 
      0.669458 | 
      0.010002 | 
      0.980888 | 
      0.864160 | 
      0.143542 | 
      0.652107 | 
      0.224476 | 
    
    
      | b | 
      0.322752 | 
      0.668354 | 
      0.448504 | 
      0.812689 | 
      0.401167 | 
      0.022905 | 
      0.644584 | 
      0.475140 | 
      0.546644 | 
    
    
      | c | 
      0.735888 | 
      0.001076 | 
      0.644940 | 
      0.526345 | 
      0.733607 | 
      0.265210 | 
      0.667444 | 
      0.619716 | 
      0.774425 | 
    
  
 
索引Slice的使用非常灵活:
1 2
   | df_s.loc[idx['B':,df_s['D']['d']>0.3],idx[df_s.sum()>4]]
 
   | 
 
  
    
       | 
      Big | 
      D | 
      E | 
      F | 
    
    
       | 
      Small | 
      d | 
      e | 
      e | 
      d | 
      e | 
      f | 
    
    
      | Upper | 
      Lower | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | B | 
      a | 
      0.907978 | 
      0.703347 | 
      0.784927 | 
      0.749511 | 
      0.398780 | 
      0.524044 | 
    
    
      | b | 
      0.690069 | 
      0.544365 | 
      0.153937 | 
      0.873528 | 
      0.619124 | 
      0.815529 | 
    
    
      | C | 
      a | 
      0.491799 | 
      0.649872 | 
      0.980888 | 
      0.143542 | 
      0.652107 | 
      0.224476 | 
    
    
      | b | 
      0.322752 | 
      0.668354 | 
      0.401167 | 
      0.644584 | 
      0.475140 | 
      0.546644 | 
    
    
      | c | 
      0.735888 | 
      0.001076 | 
      0.733607 | 
      0.667444 | 
      0.619716 | 
      0.774425 | 
    
  
 
4. 索引层的交换
(a)swaplevel方法(两层交换)
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_1 | 
      street_1 | 
      S_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | street_2 | 
      S_1 | 
      F | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | street_4 | 
      S_1 | 
      F | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
1
   | df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
   | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Address | 
      Class | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | street_1 | 
      C_1 | 
      S_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | C_2 | 
      S_2 | 
      M | 
      175 | 
      74 | 
      47.2 | 
      B- | 
    
    
      | C_3 | 
      S_1 | 
      F | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | street_2 | 
      C_1 | 
      S_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | C_1 | 
      S_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
  
 
(b)reorder_levels方法(多层交换)
1 2
   | df_muls = df.set_index(['School','Class','Address']) df_muls.head()
   | 
 
  
    
       | 
       | 
       | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | School | 
      Class | 
      Address | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | S_1 | 
      C_1 | 
      street_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | street_2 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | street_2 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | street_2 | 
      F | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | street_4 | 
      F | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
1
   | df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
   | 
 
  
    
       | 
       | 
       | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Address | 
      School | 
      Class | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | street_1 | 
      S_1 | 
      C_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | C_3 | 
      F | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | S_2 | 
      C_2 | 
      M | 
      175 | 
      74 | 
      47.2 | 
      B- | 
    
    
      | street_2 | 
      S_1 | 
      C_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | C_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
  
 
1 2
   |  df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
 
  | 
 
  
    
       | 
       | 
       | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Address | 
      School | 
      Class | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | street_1 | 
      S_1 | 
      C_1 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | C_3 | 
      F | 
      175 | 
      57 | 
      87.7 | 
      A- | 
    
    
      | S_2 | 
      C_2 | 
      M | 
      175 | 
      74 | 
      47.2 | 
      B- | 
    
    
      | street_2 | 
      S_1 | 
      C_1 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | C_1 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
  
 
三、索引设定
1. index_col参数
index_col是read_csv中的一个参数,而不是某一个方法:
1
   | pd.read_csv('data/table.csv',index_col=['Address','School']).head()
  | 
 
  
    
       | 
       | 
      Class | 
      ID | 
      Gender | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Address | 
      School | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | street_1 | 
      S_1 | 
      C_1 | 
      1101 | 
      M | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | street_2 | 
      S_1 | 
      C_1 | 
      1102 | 
      F | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | S_1 | 
      C_1 | 
      1103 | 
      M | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | S_1 | 
      C_1 | 
      1104 | 
      F | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | street_4 | 
      S_1 | 
      C_1 | 
      1105 | 
      F | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
2. reindex和reindex_like
reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
1
   | df.reindex(index=[1101,1203,1206,2402])
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173.0 | 
      63.0 | 
      34.0 | 
      A+ | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160.0 | 
      53.0 | 
      58.8 | 
      A+ | 
    
    
      | 1206 | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
    
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166.0 | 
      82.0 | 
      48.7 | 
      B | 
    
  
 
1
   | df.reindex(columns=['Height','Gender','Average']).head()
   | 
 
  
    
       | 
      Height | 
      Gender | 
      Average | 
    
    
      | ID | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      173 | 
      M | 
      NaN | 
    
    
      | 1102 | 
      192 | 
      F | 
      NaN | 
    
    
      | 1103 | 
      186 | 
      M | 
      NaN | 
    
    
      | 1104 | 
      167 | 
      F | 
      NaN | 
    
    
      | 1105 | 
      159 | 
      F | 
      NaN | 
    
  
 
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
1 2
   | df.reindex(index=[1101,1203,1206,2402],method='bfill')
 
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | 1206 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166 | 
      82 | 
      48.7 | 
      B | 
    
  
 
1 2
   | df.reindex(index=[1101,1203,1206,2402],method='nearest')
 
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | 1206 | 
      S_1 | 
      C_2 | 
      F | 
      street_6 | 
      167 | 
      63 | 
      68.4 | 
      B- | 
    
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166 | 
      82 | 
      48.7 | 
      B | 
    
  
 
reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
1 2 3 4
   | df_temp = pd.DataFrame({'Weight':np.zeros(5),                         'Height':np.zeros(5),                         'ID':[1101,1104,1103,1106,1102]}).set_index('ID') df_temp.reindex_like(df[0:5][['Weight','Height']])
  | 
 
  
    
       | 
      Weight | 
      Height | 
    
    
      | ID | 
       | 
       | 
    
  
  
    
      | 1101 | 
      0.0 | 
      0.0 | 
    
    
      | 1102 | 
      0.0 | 
      0.0 | 
    
    
      | 1103 | 
      0.0 | 
      0.0 | 
    
    
      | 1104 | 
      0.0 | 
      0.0 | 
    
    
      | 1105 | 
      NaN | 
      NaN | 
    
  
 
如果df_temp单调还可以使用method参数:
1 2 3 4 5
   | df_temp = pd.DataFrame({'Weight':range(5),                         'Height':range(5),                         'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index() df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
 
  | 
 
  
    
       | 
      Weight | 
      Height | 
    
    
      | ID | 
       | 
       | 
    
  
  
    
      | 1101 | 
      0 | 
      0 | 
    
    
      | 1102 | 
      4 | 
      4 | 
    
    
      | 1103 | 
      2 | 
      2 | 
    
    
      | 1104 | 
      1 | 
      1 | 
    
    
      | 1105 | 
      3 | 
      3 | 
    
  
 
3. set_index和reset_index
先介绍set_index:从字面意思看,就是将某些列作为索引
使用表内列作为索引:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
1
   | df.set_index('Class').head()
  | 
 
  
    
       | 
      School | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | Class | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | C_1 | 
      S_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | C_1 | 
      S_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | C_1 | 
      S_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | C_1 | 
      S_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | C_1 | 
      S_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
利用append参数可以将当前索引维持不变
1
   | df.set_index('Class',append=True).head()
  | 
 
  
    
       | 
       | 
      School | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
      Class | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      C_1 | 
      S_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      C_1 | 
      S_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      C_1 | 
      S_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      C_1 | 
      S_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      C_1 | 
      S_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
1
   | df.set_index(pd.Series(range(df.shape[0]))).head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
  
  
    
      | 0 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 2 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 3 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 4 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
可以直接添加多级索引:
1
   | df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
   | 
 
  
    
       | 
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
  
  
    
      | 0 | 
      1.0 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1 | 
      1.0 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 2 | 
      1.0 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 3 | 
      1.0 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 4 | 
      1.0 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
下面介绍reset_index方法,它的主要功能是将索引重置
默认状态直接恢复到自然数索引:
  
    
       | 
      ID | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
  
  
    
      | 0 | 
      1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1 | 
      1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 2 | 
      1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 3 | 
      1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 4 | 
      1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
1 2 3 4 5 6
   | L1,L2 = ['A','B','C'],['a','b','c'] mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower')) L3,L4 = ['D','E','F'],['d','e','f'] mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small')) df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2) df_temp.head()
   | 
 
  
    
       | 
      Big | 
      D | 
      E | 
      F | 
    
    
       | 
      Small | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
    
    
      | Upper | 
      Lower | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | A | 
      a | 
      0.322856 | 
      0.303286 | 
      0.510177 | 
      0.677119 | 
      0.539872 | 
      0.008080 | 
      0.155318 | 
      0.687972 | 
      0.211114 | 
    
    
      | b | 
      0.788099 | 
      0.099715 | 
      0.033253 | 
      0.784997 | 
      0.822390 | 
      0.681439 | 
      0.226472 | 
      0.964799 | 
      0.622567 | 
    
    
      | c | 
      0.206164 | 
      0.417146 | 
      0.169923 | 
      0.764059 | 
      0.387532 | 
      0.741304 | 
      0.156683 | 
      0.105008 | 
      0.636024 | 
    
    
      | B | 
      a | 
      0.154204 | 
      0.489378 | 
      0.026083 | 
      0.023313 | 
      0.392803 | 
      0.537590 | 
      0.423063 | 
      0.892903 | 
      0.083580 | 
    
    
      | b | 
      0.516691 | 
      0.648889 | 
      0.210534 | 
      0.648650 | 
      0.492758 | 
      0.013937 | 
      0.618279 | 
      0.517379 | 
      0.346631 | 
    
  
 
1 2
   | df_temp1 = df_temp.reset_index(level=1,col_level=1) df_temp1.head()
   | 
 
  
    
      | Big | 
       | 
      D | 
      E | 
      F | 
    
    
      | Small | 
      Lower | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
    
    
      | Upper | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | A | 
      a | 
      0.322856 | 
      0.303286 | 
      0.510177 | 
      0.677119 | 
      0.539872 | 
      0.008080 | 
      0.155318 | 
      0.687972 | 
      0.211114 | 
    
    
      | A | 
      b | 
      0.788099 | 
      0.099715 | 
      0.033253 | 
      0.784997 | 
      0.822390 | 
      0.681439 | 
      0.226472 | 
      0.964799 | 
      0.622567 | 
    
    
      | A | 
      c | 
      0.206164 | 
      0.417146 | 
      0.169923 | 
      0.764059 | 
      0.387532 | 
      0.741304 | 
      0.156683 | 
      0.105008 | 
      0.636024 | 
    
    
      | B | 
      a | 
      0.154204 | 
      0.489378 | 
      0.026083 | 
      0.023313 | 
      0.392803 | 
      0.537590 | 
      0.423063 | 
      0.892903 | 
      0.083580 | 
    
    
      | B | 
      b | 
      0.516691 | 
      0.648889 | 
      0.210534 | 
      0.648650 | 
      0.492758 | 
      0.013937 | 
      0.618279 | 
      0.517379 | 
      0.346631 | 
    
  
 
MultiIndex([( '', 'Lower'),
            ('D',     'd'),
            ('D',     'e'),
            ('D',     'f'),
            ('E',     'd'),
            ('E',     'e'),
            ('E',     'f'),
            ('F',     'd'),
            ('F',     'e'),
            ('F',     'f')],
           names=['Big', 'Small'])
Index(['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'], dtype='object', name='Upper')
4. rename_axis和rename
rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
1
   | df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
  | 
 
  
    
       | 
      BigBig | 
      D | 
      E | 
      F | 
    
    
       | 
      Small | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
      d | 
      e | 
      f | 
    
    
      | Upper | 
      LowerLower | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | A | 
      a | 
      0.322856 | 
      0.303286 | 
      0.510177 | 
      0.677119 | 
      0.539872 | 
      0.008080 | 
      0.155318 | 
      0.687972 | 
      0.211114 | 
    
    
      | b | 
      0.788099 | 
      0.099715 | 
      0.033253 | 
      0.784997 | 
      0.822390 | 
      0.681439 | 
      0.226472 | 
      0.964799 | 
      0.622567 | 
    
    
      | c | 
      0.206164 | 
      0.417146 | 
      0.169923 | 
      0.764059 | 
      0.387532 | 
      0.741304 | 
      0.156683 | 
      0.105008 | 
      0.636024 | 
    
    
      | B | 
      a | 
      0.154204 | 
      0.489378 | 
      0.026083 | 
      0.023313 | 
      0.392803 | 
      0.537590 | 
      0.423063 | 
      0.892903 | 
      0.083580 | 
    
    
      | b | 
      0.516691 | 
      0.648889 | 
      0.210534 | 
      0.648650 | 
      0.492758 | 
      0.013937 | 
      0.618279 | 
      0.517379 | 
      0.346631 | 
    
    
      | c | 
      0.471466 | 
      0.389771 | 
      0.358777 | 
      0.755062 | 
      0.813432 | 
      0.440888 | 
      0.351122 | 
      0.004274 | 
      0.268696 | 
    
    
      | C | 
      a | 
      0.095295 | 
      0.117381 | 
      0.472925 | 
      0.710563 | 
      0.521524 | 
      0.486703 | 
      0.530199 | 
      0.453099 | 
      0.465785 | 
    
    
      | b | 
      0.478185 | 
      0.465777 | 
      0.916301 | 
      0.135971 | 
      0.868624 | 
      0.789809 | 
      0.959583 | 
      0.689099 | 
      0.379456 | 
    
    
      | c | 
      0.664374 | 
      0.197314 | 
      0.382233 | 
      0.798935 | 
      0.642967 | 
      0.933398 | 
      0.827343 | 
      0.667308 | 
      0.309584 | 
    
  
 
rename方法用于修改列或者行索引标签,而不是索引名:
1
   | df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()
  | 
 
  
    
       | 
      Big | 
      D | 
      E | 
      F | 
    
    
       | 
      Small | 
      d | 
      changed_e | 
      f | 
      d | 
      changed_e | 
      f | 
      d | 
      changed_e | 
      f | 
    
    
      | Upper | 
      Lower | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | T | 
      a | 
      0.322856 | 
      0.303286 | 
      0.510177 | 
      0.677119 | 
      0.539872 | 
      0.008080 | 
      0.155318 | 
      0.687972 | 
      0.211114 | 
    
    
      | b | 
      0.788099 | 
      0.099715 | 
      0.033253 | 
      0.784997 | 
      0.822390 | 
      0.681439 | 
      0.226472 | 
      0.964799 | 
      0.622567 | 
    
    
      | c | 
      0.206164 | 
      0.417146 | 
      0.169923 | 
      0.764059 | 
      0.387532 | 
      0.741304 | 
      0.156683 | 
      0.105008 | 
      0.636024 | 
    
    
      | B | 
      a | 
      0.154204 | 
      0.489378 | 
      0.026083 | 
      0.023313 | 
      0.392803 | 
      0.537590 | 
      0.423063 | 
      0.892903 | 
      0.083580 | 
    
    
      | b | 
      0.516691 | 
      0.648889 | 
      0.210534 | 
      0.648650 | 
      0.492758 | 
      0.013937 | 
      0.618279 | 
      0.517379 | 
      0.346631 | 
    
  
 
四、常用索引型函数
1. where函数
当对条件为False的单元进行填充:
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
1 2
   | df.where(df['Gender']=='M').head()
 
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173.0 | 
      63.0 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186.0 | 
      82.0 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
    
    
      | 1105 | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
      NaN | 
    
  
 
通过这种方法筛选结果和[]操作符的结果完全一致:
1
   | df.where(df['Gender']=='M').dropna().head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173.0 | 
      63.0 | 
      34.0 | 
      A+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186.0 | 
      82.0 | 
      87.2 | 
      B+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188.0 | 
      68.0 | 
      97.0 | 
      A- | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160.0 | 
      53.0 | 
      58.8 | 
      A+ | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161.0 | 
      68.0 | 
      31.5 | 
      B+ | 
    
  
 
第一个参数为布尔条件,第二个参数为填充值:
1
   | df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173.000000 | 
      63.000000 | 
      34.000000 | 
      A+ | 
    
    
      | 1102 | 
      0.0673597 | 
      0.243962 | 
      0.806216 | 
      0.220284 | 
      0.211720 | 
      0.307156 | 
      0.519682 | 
      0.400328 | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186.000000 | 
      82.000000 | 
      87.200000 | 
      B+ | 
    
    
      | 1104 | 
      0.566107 | 
      0.431099 | 
      0.197058 | 
      0.0757116 | 
      0.159198 | 
      0.841681 | 
      0.193337 | 
      0.189899 | 
    
    
      | 1105 | 
      0.164871 | 
      0.342414 | 
      0.587261 | 
      0.821542 | 
      0.641076 | 
      0.464315 | 
      0.168550 | 
      0.502523 | 
    
  
 
2. mask函数
mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
1
   | df.mask(df['Gender']=='M').dropna().head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192.0 | 
      73.0 | 
      32.5 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167.0 | 
      81.0 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159.0 | 
      64.0 | 
      84.8 | 
      B+ | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176.0 | 
      94.0 | 
      63.5 | 
      B- | 
    
    
      | 1204 | 
      S_1 | 
      C_2 | 
      F | 
      street_5 | 
      162.0 | 
      63.0 | 
      33.8 | 
      B | 
    
  
 
1
   | df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      0.799256 | 
      0.821333 | 
      0.957415 | 
      0.218748 | 
      0.808963 | 
      0.176752 | 
      0.423925 | 
      0.514648 | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192.000000 | 
      73.000000 | 
      32.500000 | 
      B+ | 
    
    
      | 1103 | 
      0.265116 | 
      0.733503 | 
      0.464346 | 
      0.306176 | 
      0.531155 | 
      0.930370 | 
      0.371942 | 
      0.202589 | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167.000000 | 
      81.000000 | 
      80.400000 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159.000000 | 
      64.000000 | 
      84.800000 | 
      B+ | 
    
  
 
3. query函数
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1102 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      192 | 
      73 | 
      32.5 | 
      B+ | 
    
    
      | 1103 | 
      S_1 | 
      C_1 | 
      M | 
      street_2 | 
      186 | 
      82 | 
      87.2 | 
      B+ | 
    
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
  
 
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
1
   | df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
  | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1303 | 
      S_1 | 
      C_3 | 
      M | 
      street_7 | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | 2304 | 
      S_2 | 
      C_3 | 
      F | 
      street_6 | 
      164 | 
      81 | 
      95.5 | 
      A- | 
    
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166 | 
      82 | 
      48.7 | 
      B | 
    
  
 
五、重复元素处理
1. duplicated方法
该方法返回了是否重复的布尔列表
1
   | df.duplicated('Class').head()
  | 
 
ID
1101    False
1102     True
1103     True
1104     True
1105     True
dtype: bool
可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为False
1
   | df.duplicated('Class',keep='last').tail()
  | 
 
ID
2401     True
2402     True
2403     True
2404     True
2405    False
dtype: bool
1
   | df.duplicated('Class',keep=False).head()
  | 
 
ID
1101    True
1102    True
1103    True
1104    True
1105    True
dtype: bool
2. drop_duplicates方法
从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
1
   | df.drop_duplicates('Class')
  | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 2401 | 
      S_2 | 
      C_4 | 
      F | 
      street_2 | 
      192 | 
      62 | 
      45.3 | 
      A | 
    
  
 
参数与duplicate函数类似:
1
   | df.drop_duplicates('Class',keep='last')
  | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 2105 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      170 | 
      81 | 
      34.2 | 
      A | 
    
    
      | 2205 | 
      S_2 | 
      C_2 | 
      F | 
      street_7 | 
      183 | 
      76 | 
      85.4 | 
      B | 
    
    
      | 2305 | 
      S_2 | 
      C_3 | 
      M | 
      street_4 | 
      187 | 
      73 | 
      48.9 | 
      B | 
    
    
      | 2405 | 
      S_2 | 
      C_4 | 
      F | 
      street_6 | 
      193 | 
      54 | 
      47.6 | 
      B | 
    
  
 
在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
1
   | df.drop_duplicates(['School','Class'])
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      S_1 | 
      C_1 | 
      M | 
      street_1 | 
      173 | 
      63 | 
      34.0 | 
      A+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 2101 | 
      S_2 | 
      C_1 | 
      M | 
      street_7 | 
      174 | 
      84 | 
      83.3 | 
      C | 
    
    
      | 2201 | 
      S_2 | 
      C_2 | 
      M | 
      street_5 | 
      193 | 
      100 | 
      39.1 | 
      B | 
    
    
      | 2301 | 
      S_2 | 
      C_3 | 
      F | 
      street_4 | 
      157 | 
      78 | 
      72.3 | 
      B+ | 
    
    
      | 2401 | 
      S_2 | 
      C_4 | 
      F | 
      street_2 | 
      192 | 
      62 | 
      45.3 | 
      A | 
    
  
 
六、抽样函数
这里的抽样函数指的就是sample函数
(a)n为样本量
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1104 | 
      S_1 | 
      C_1 | 
      F | 
      street_2 | 
      167 | 
      81 | 
      80.4 | 
      B- | 
    
    
      | 2204 | 
      S_2 | 
      C_2 | 
      M | 
      street_1 | 
      175 | 
      74 | 
      47.2 | 
      B- | 
    
    
      | 1301 | 
      S_1 | 
      C_3 | 
      M | 
      street_4 | 
      161 | 
      68 | 
      31.5 | 
      B+ | 
    
    
      | 2101 | 
      S_2 | 
      C_1 | 
      M | 
      street_7 | 
      174 | 
      84 | 
      83.3 | 
      C | 
    
    
      | 1305 | 
      S_1 | 
      C_3 | 
      F | 
      street_5 | 
      187 | 
      69 | 
      61.7 | 
      B- | 
    
  
 
(b)frac为抽样比
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 2201 | 
      S_2 | 
      C_2 | 
      M | 
      street_5 | 
      193 | 
      100 | 
      39.1 | 
      B | 
    
    
      | 2203 | 
      S_2 | 
      C_2 | 
      M | 
      street_4 | 
      155 | 
      91 | 
      73.8 | 
      A+ | 
    
  
 
(c)replace为是否放回
1
   | df.sample(n=df.shape[0],replace=True).head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 2103 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      157 | 
      61 | 
      52.5 | 
      B- | 
    
    
      | 1303 | 
      S_1 | 
      C_3 | 
      M | 
      street_7 | 
      188 | 
      82 | 
      49.7 | 
      B | 
    
    
      | 1203 | 
      S_1 | 
      C_2 | 
      M | 
      street_6 | 
      160 | 
      53 | 
      58.8 | 
      A+ | 
    
    
      | 2103 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      157 | 
      61 | 
      52.5 | 
      B- | 
    
    
      | 2103 | 
      S_2 | 
      C_1 | 
      M | 
      street_4 | 
      157 | 
      61 | 
      52.5 | 
      B- | 
    
  
 
1
   | df.sample(n=35,replace=True).index.is_unique
   | 
 
False
(d)axis为抽样维度,默认为0,即抽行
1
   | df.sample(n=3,axis=1).head()
   | 
 
  
    
       | 
      Class | 
      Height | 
      School | 
    
    
      | ID | 
       | 
       | 
       | 
    
  
  
    
      | 1101 | 
      C_1 | 
      173 | 
      S_1 | 
    
    
      | 1102 | 
      C_1 | 
      192 | 
      S_1 | 
    
    
      | 1103 | 
      C_1 | 
      186 | 
      S_1 | 
    
    
      | 1104 | 
      C_1 | 
      167 | 
      S_1 | 
    
    
      | 1105 | 
      C_1 | 
      159 | 
      S_1 | 
    
  
 
(e)weights为样本权重,自动归一化
1
   | df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
   | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 1105 | 
      S_1 | 
      C_1 | 
      F | 
      street_4 | 
      159 | 
      64 | 
      84.8 | 
      B+ | 
    
    
      | 2104 | 
      S_2 | 
      C_1 | 
      F | 
      street_5 | 
      159 | 
      97 | 
      72.2 | 
      B+ | 
    
    
      | 1201 | 
      S_1 | 
      C_2 | 
      M | 
      street_5 | 
      188 | 
      68 | 
      97.0 | 
      A- | 
    
  
 
1 2
   |  df.sample(n=3,weights=df['Math']).head()
 
  | 
 
  
    
       | 
      School | 
      Class | 
      Gender | 
      Address | 
      Height | 
      Weight | 
      Math | 
      Physics | 
    
    
      | ID | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
       | 
    
  
  
    
      | 2402 | 
      S_2 | 
      C_4 | 
      M | 
      street_7 | 
      166 | 
      82 | 
      48.7 | 
      B | 
    
    
      | 1202 | 
      S_1 | 
      C_2 | 
      F | 
      street_4 | 
      176 | 
      94 | 
      63.5 | 
      B- | 
    
    
      | 2403 | 
      S_2 | 
      C_4 | 
      F | 
      street_6 | 
      158 | 
      60 | 
      59.7 | 
      B+ | 
    
  
 
七、问题与练习
1. 问题
【问题一】 如何更改列或行的顺序?
【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
【问题三】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
【问题四】 索引设定中的所有方法分别适用于哪些场合?
【问题五】 如何快速找出某一列的缺失值所在索引?
2. 练习
【练习一】 现有一份关于UFO的数据集,请解决下列问题:
1
   | pd.read_csv('data/UFO.csv').head()
  | 
 
  
    
       | 
      datetime | 
      shape | 
      duration (seconds) | 
      latitude | 
      longitude | 
    
  
  
    
      | 0 | 
      10/10/1949 20:30 | 
      cylinder | 
      2700.0 | 
      29.883056 | 
      -97.941111 | 
    
    
      | 1 | 
      10/10/1949 21:00 | 
      light | 
      7200.0 | 
      29.384210 | 
      -98.581082 | 
    
    
      | 2 | 
      10/10/1955 17:00 | 
      circle | 
      20.0 | 
      53.200000 | 
      -2.916667 | 
    
    
      | 3 | 
      10/10/1956 21:00 | 
      circle | 
      20.0 | 
      28.978333 | 
      -96.645833 | 
    
    
      | 4 | 
      10/10/1960 20:00 | 
      light | 
      900.0 | 
      21.418056 | 
      -157.803611 | 
    
  
 
(a)在所有被观测时间超过60s的时间中,哪个形状最多?
(b)对经纬度进行划分:-180°至180°以30°为一个划分,-90°至90°以18°为一个划分,请问哪个区域中报告的UFO事件数量最多?
【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
1
   | pd.read_csv('data/Pokemon.csv').head()
  | 
 
  
    
       | 
      # | 
      Name | 
      Type 1 | 
      Type 2 | 
      Total | 
      HP | 
      Attack | 
      Defense | 
      Sp. Atk | 
      Sp. Def | 
      Speed | 
      Generation | 
      Legendary | 
    
  
  
    
      | 0 | 
      1 | 
      Bulbasaur | 
      Grass | 
      Poison | 
      318 | 
      45 | 
      49 | 
      49 | 
      65 | 
      65 | 
      45 | 
      1 | 
      False | 
    
    
      | 1 | 
      2 | 
      Ivysaur | 
      Grass | 
      Poison | 
      405 | 
      60 | 
      62 | 
      63 | 
      80 | 
      80 | 
      60 | 
      1 | 
      False | 
    
    
      | 2 | 
      3 | 
      Venusaur | 
      Grass | 
      Poison | 
      525 | 
      80 | 
      82 | 
      83 | 
      100 | 
      100 | 
      80 | 
      1 | 
      False | 
    
    
      | 3 | 
      3 | 
      VenusaurMega Venusaur | 
      Grass | 
      Poison | 
      625 | 
      80 | 
      100 | 
      123 | 
      122 | 
      120 | 
      80 | 
      1 | 
      False | 
    
    
      | 4 | 
      4 | 
      Charmander | 
      Fire | 
      NaN | 
      309 | 
      39 | 
      52 | 
      43 | 
      60 | 
      50 | 
      65 | 
      1 | 
      False | 
    
  
 
(a)双属性的Pokemon占总体比例的多少?
(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?
(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?
(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?
(e)哪个属性(只考虑第一属性)的神兽比例最高?该属性神兽的种族值也是最高的吗?