第2章 索引
1 2 3 4
| import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col='ID') df.head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
一、单级索引
1. loc方法、iloc方法、[]操作符
最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点
(a)loc方法(注意:所有在loc中使用的切片全部包含右端点!)
① 单行索引:
School S_1
Class C_1
Gender M
Address street_2
Height 186
Weight 82
Math 87.2
Physics B+
Name: 1103, dtype: object
② 多行索引:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1304 |
S_1 |
C_3 |
M |
street_2 |
195 |
70 |
85.2 |
A |
1305 |
S_1 |
C_3 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
2102 |
S_2 |
C_1 |
F |
street_6 |
161 |
61 |
50.6 |
B+ |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
2305 |
S_2 |
C_3 |
M |
street_4 |
187 |
73 |
48.9 |
B |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
2303 |
S_2 |
C_3 |
F |
street_7 |
190 |
99 |
65.9 |
C |
③ 单列索引:
1
| df.loc[:,'Height'].head()
|
ID
1101 173
1102 192
1103 186
1104 167
1105 159
Name: Height, dtype: int64
④ 多列索引:
1
| df.loc[:,['Height','Math']].head()
|
|
Height |
Math |
ID |
|
|
1101 |
173 |
34.0 |
1102 |
192 |
32.5 |
1103 |
186 |
87.2 |
1104 |
167 |
80.4 |
1105 |
159 |
84.8 |
1
| df.loc[:,'Height':'Math'].head()
|
|
Height |
Weight |
Math |
ID |
|
|
|
1101 |
173 |
63 |
34.0 |
1102 |
192 |
73 |
32.5 |
1103 |
186 |
82 |
87.2 |
1104 |
167 |
81 |
80.4 |
1105 |
159 |
64 |
84.8 |
⑤ 联合索引:
1
| df.loc[1102:2401:3,'Height':'Math'].head()
|
|
Height |
Weight |
Math |
ID |
|
|
|
1102 |
192 |
73 |
32.5 |
1105 |
159 |
64 |
84.8 |
1203 |
160 |
53 |
58.8 |
1301 |
161 |
68 |
31.5 |
1304 |
195 |
70 |
85.2 |
⑥ 函数式索引:
1 2
| df.loc[lambda x:x['Gender']=='M'].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1 2 3
| def f(x): return [1101,1103] df.loc[f]
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
⑦ 布尔索引(将重点在第2节介绍)
1
| df.loc[df['Address'].isin(['street_7','street_4'])].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
1
| df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
(b)iloc方法(注意与loc不同,切片右端点不包含)
① 单行索引:
School S_1
Class C_1
Gender F
Address street_2
Height 167
Weight 81
Math 80.4
Physics B-
Name: 1104, dtype: object
② 多行索引:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
③ 单列索引:
ID
1101 street_1
1102 street_2
1103 street_2
1104 street_2
1105 street_4
Name: Address, dtype: object
④ 多列索引:
|
Physics |
Weight |
Address |
Class |
ID |
|
|
|
|
1101 |
A+ |
63 |
street_1 |
C_1 |
1102 |
B+ |
73 |
street_2 |
C_1 |
1103 |
B+ |
82 |
street_2 |
C_1 |
1104 |
B- |
81 |
street_2 |
C_1 |
1105 |
B+ |
64 |
street_4 |
C_1 |
⑤ 混合索引:
1
| df.iloc[3::4,7::-2].head()
|
|
Physics |
Weight |
Address |
Class |
ID |
|
|
|
|
1104 |
B- |
81 |
street_2 |
C_1 |
1203 |
A+ |
53 |
street_6 |
C_2 |
1302 |
A- |
57 |
street_1 |
C_3 |
2101 |
C |
84 |
street_7 |
C_1 |
2105 |
A |
81 |
street_4 |
C_1 |
⑥ 函数式索引:
1
| df.iloc[lambda x:[3]].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
小节:由上所述,iloc中接收的参数只能为整数或整数列表,不能使用布尔索引
(c) []操作符
如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中的浮点[]并不是进行位置比较,而是值比较,非常特殊
(c.1)Series的[]操作
① 单元素索引:
1 2 3
| s = pd.Series(df['Math'],index=df.index) s[1101]
|
34.0
② 多行索引:
ID
1101 34.0
1102 32.5
1103 87.2
1104 80.4
Name: Math, dtype: float64
③ 函数式索引:
1 2
| s[lambda x: x.index[16::-6]]
|
ID
2102 50.6
1301 31.5
1105 84.8
Name: Math, dtype: float64
④ 布尔索引:
ID
1103 87.2
1104 80.4
1105 84.8
1201 97.0
1302 87.7
1304 85.2
2101 83.3
2205 85.4
2304 95.5
Name: Math, dtype: float64
(c.2)DataFrame的[]操作
① 单行索引:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1 2
| row = df.index.get_loc(1102) df[row:row+1]
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
② 多行索引:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
③ 单列索引:
ID
1101 S_1
1102 S_1
1103 S_1
1104 S_1
1105 S_1
Name: School, dtype: object
④ 多列索引:
1
| df[['School','Math']].head()
|
|
School |
Math |
ID |
|
|
1101 |
S_1 |
34.0 |
1102 |
S_1 |
32.5 |
1103 |
S_1 |
87.2 |
1104 |
S_1 |
80.4 |
1105 |
S_1 |
84.8 |
⑤函数式索引:
1
| df[lambda x:['Math','Physics']].head()
|
|
Math |
Physics |
ID |
|
|
1101 |
34.0 |
A+ |
1102 |
32.5 |
B+ |
1103 |
87.2 |
B+ |
1104 |
80.4 |
B- |
1105 |
84.8 |
B+ |
⑥ 布尔索引:
1
| df[df['Gender']=='F'].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1204 |
S_1 |
C_2 |
F |
street_5 |
162 |
63 |
33.8 |
B |
小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
2. 布尔索引
(a)布尔符号:’&’,’|’,’~’:分别代表和and,或or,取反not
1
| df[(df['Gender']=='F')&(df['Address']=='street_2')].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
2404 |
S_2 |
C_4 |
F |
street_2 |
160 |
84 |
67.7 |
B |
1
| df[(df['Math']>85)|(df['Address']=='street_7')].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1302 |
S_1 |
C_3 |
F |
street_1 |
175 |
57 |
87.7 |
A- |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
1304 |
S_1 |
C_3 |
M |
street_2 |
195 |
70 |
85.2 |
A |
1
| df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1204 |
S_1 |
C_2 |
F |
street_5 |
162 |
63 |
33.8 |
B |
1205 |
S_1 |
C_2 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
loc和[]中相应位置都能使用布尔列表选择:
1 2 3
| df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()
|
|
Physics |
ID |
|
1103 |
B+ |
1104 |
B- |
1105 |
B+ |
1201 |
A- |
1202 |
B- |
(b) isin方法
1
| df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
1 2 3
| df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
3. 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现:
1 2 3 4 5 6 7 8 9
| display(df.at[1101,'School']) display(df.loc[1101,'School']) display(df.iat[0,0]) display(df.iloc[0,0])
|
'S_1'
'S_1'
'S_1'
'S_1'
4. 区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
(a)利用interval_range方法
1 2
| pd.interval_range(start=0,end=5)
|
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
closed='right',
dtype='interval[int64]')
1 2
| pd.interval_range(start=0,periods=8,freq=5)
|
IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
closed='right',
dtype='interval[int64]')
(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
1 2 3
| math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
math_interval.head()
|
ID
1101 (0, 40]
1102 (0, 40]
1103 (80, 100]
1104 (80, 100]
1105 (80, 100]
Name: Math, dtype: category
Categories (4, interval[int64]): [(0, 40] < (40, 60] < (60, 80] < (80, 100]]
(c)区间索引的选取
1 2 3
| df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\ .reset_index().set_index('Math_interval') df_i.head()
|
|
ID |
Math |
Math_interval |
|
|
(0, 40] |
1101 |
34.0 |
(0, 40] |
1102 |
32.5 |
(80, 100] |
1103 |
87.2 |
(80, 100] |
1104 |
80.4 |
(80, 100] |
1105 |
84.8 |
|
ID |
Math |
Math_interval |
|
|
(60, 80] |
1202 |
63.5 |
(60, 80] |
1205 |
68.4 |
(60, 80] |
1305 |
61.7 |
(60, 80] |
2104 |
72.2 |
(60, 80] |
2202 |
68.5 |
1
| df_i.loc[[65,90]].head()
|
|
ID |
Math |
Math_interval |
|
|
(60, 80] |
1202 |
63.5 |
(60, 80] |
1205 |
68.4 |
(60, 80] |
1305 |
61.7 |
(60, 80] |
2104 |
72.2 |
(60, 80] |
2202 |
68.5 |
如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:
1 2
| df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
|
|
ID |
Math |
Math_interval |
|
|
(80, 100] |
1103 |
87.2 |
(80, 100] |
1104 |
80.4 |
(80, 100] |
1105 |
84.8 |
(80, 100] |
1201 |
97.0 |
(60, 80] |
1202 |
63.5 |
二、多级索引
1. 创建多级索引
(a)通过from_tuple或from_arrays
① 直接创建元组
1 2 3
| tuples = [('A','a'),('A','b'),('B','a'),('B','b')] mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower')) mul_index
|
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
1
| pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
② 利用zip创建元组
1 2 3 4 5
| L1 = list('AABB') L2 = list('abab') tuples = list(zip(L1,L2)) mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower')) pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
③ 通过Array创建
1 2 3
| arrays = [['A','a'],['A','b'],['B','a'],['B','b']] mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower')) pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
(b)通过from_product
1 2 3 4
| L1 = ['A','B'] L2 = ['a','b'] pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
|
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
(c)指定df中的列创建(set_index方法)
1 2
| df_using_mul = df.set_index(['Class','Address']) df_using_mul.head()
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
2. 多层索引切片
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
(a)一般切片
1 2 3 4 5 6
|
df_using_mul.sort_index().loc['C_2','street_5']
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_5 |
S_1 |
M |
188 |
68 |
97.0 |
A- |
street_5 |
S_1 |
F |
162 |
63 |
33.8 |
B |
street_5 |
S_2 |
M |
193 |
100 |
39.1 |
B |
1 2 3 4
|
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_6 |
S_1 |
M |
160 |
53 |
58.8 |
A+ |
street_6 |
S_1 |
F |
167 |
63 |
68.4 |
B- |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_1 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
street_4 |
S_2 |
F |
157 |
78 |
72.3 |
B+ |
street_4 |
S_2 |
M |
187 |
73 |
48.9 |
B |
1 2
| df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_1 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
(b)第一类特殊情况:由元组构成列表
1 2
| df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
(c)第二类特殊情况:由列表构成元组
1 2
| df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_4 |
S_1 |
F |
176 |
94 |
63.5 |
B- |
street_4 |
S_2 |
M |
155 |
91 |
73.8 |
A+ |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
street_4 |
S_2 |
F |
157 |
78 |
72.3 |
B+ |
street_4 |
S_2 |
M |
187 |
73 |
48.9 |
B |
street_7 |
S_1 |
M |
188 |
82 |
49.7 |
B |
street_7 |
S_2 |
F |
190 |
99 |
65.9 |
C |
3. 多层索引中的slice对象
1 2 3 4 5 6
| L1,L2 = ['A','B','C'],['a','b','c'] mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower')) L3,L4 = ['D','E','F'],['d','e','f'] mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small')) df_s = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2) df_s
|
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.055073 |
0.046398 |
0.433773 |
0.585803 |
0.758589 |
0.021143 |
0.388852 |
0.086923 |
0.249213 |
b |
0.581040 |
0.619700 |
0.269257 |
0.498630 |
0.172987 |
0.373643 |
0.401451 |
0.608396 |
0.517261 |
c |
0.734722 |
0.664146 |
0.715707 |
0.422658 |
0.702079 |
0.489320 |
0.987386 |
0.034874 |
0.952730 |
B |
a |
0.907978 |
0.703347 |
0.475559 |
0.005389 |
0.784927 |
0.072212 |
0.749511 |
0.398780 |
0.524044 |
b |
0.690069 |
0.544365 |
0.132101 |
0.149513 |
0.153937 |
0.142433 |
0.873528 |
0.619124 |
0.815529 |
c |
0.197430 |
0.976303 |
0.137348 |
0.981766 |
0.028390 |
0.479319 |
0.621560 |
0.818642 |
0.379542 |
C |
a |
0.491799 |
0.649872 |
0.669458 |
0.010002 |
0.980888 |
0.864160 |
0.143542 |
0.652107 |
0.224476 |
b |
0.322752 |
0.668354 |
0.448504 |
0.812689 |
0.401167 |
0.022905 |
0.644584 |
0.475140 |
0.546644 |
c |
0.735888 |
0.001076 |
0.644940 |
0.526345 |
0.733607 |
0.265210 |
0.667444 |
0.619716 |
0.774425 |
索引Slice的使用非常灵活:
1 2
| df_s.loc[idx['B':,df_s['D']['d']>0.3],idx[df_s.sum()>4]]
|
|
Big |
D |
E |
F |
|
Small |
d |
e |
e |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
B |
a |
0.907978 |
0.703347 |
0.784927 |
0.749511 |
0.398780 |
0.524044 |
b |
0.690069 |
0.544365 |
0.153937 |
0.873528 |
0.619124 |
0.815529 |
C |
a |
0.491799 |
0.649872 |
0.980888 |
0.143542 |
0.652107 |
0.224476 |
b |
0.322752 |
0.668354 |
0.401167 |
0.644584 |
0.475140 |
0.546644 |
c |
0.735888 |
0.001076 |
0.733607 |
0.667444 |
0.619716 |
0.774425 |
4. 索引层的交换
(a)swaplevel方法(两层交换)
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
1
| df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
|
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Address |
Class |
|
|
|
|
|
|
street_1 |
C_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
C_2 |
S_2 |
M |
175 |
74 |
47.2 |
B- |
C_3 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
C_1 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
(b)reorder_levels方法(多层交换)
1 2
| df_muls = df.set_index(['School','Class','Address']) df_muls.head()
|
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
School |
Class |
Address |
|
|
|
|
|
S_1 |
C_1 |
street_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
F |
159 |
64 |
84.8 |
B+ |
1
| df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
|
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
Class |
|
|
|
|
|
street_1 |
S_1 |
C_1 |
M |
173 |
63 |
34.0 |
A+ |
C_3 |
F |
175 |
57 |
87.7 |
A- |
S_2 |
C_2 |
M |
175 |
74 |
47.2 |
B- |
street_2 |
S_1 |
C_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
M |
186 |
82 |
87.2 |
B+ |
1 2
| df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
|
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
Class |
|
|
|
|
|
street_1 |
S_1 |
C_1 |
M |
173 |
63 |
34.0 |
A+ |
C_3 |
F |
175 |
57 |
87.7 |
A- |
S_2 |
C_2 |
M |
175 |
74 |
47.2 |
B- |
street_2 |
S_1 |
C_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
M |
186 |
82 |
87.2 |
B+ |
三、索引设定
1. index_col参数
index_col是read_csv中的一个参数,而不是某一个方法:
1
| pd.read_csv('data/table.csv',index_col=['Address','School']).head()
|
|
|
Class |
ID |
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
|
|
|
|
|
|
|
street_1 |
S_1 |
C_1 |
1101 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
C_1 |
1102 |
F |
192 |
73 |
32.5 |
B+ |
S_1 |
C_1 |
1103 |
M |
186 |
82 |
87.2 |
B+ |
S_1 |
C_1 |
1104 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
C_1 |
1105 |
F |
159 |
64 |
84.8 |
B+ |
2. reindex和reindex_like
reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1
| df.reindex(index=[1101,1203,1206,2402])
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160.0 |
53.0 |
58.8 |
A+ |
1206 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
2402 |
S_2 |
C_4 |
M |
street_7 |
166.0 |
82.0 |
48.7 |
B |
1
| df.reindex(columns=['Height','Gender','Average']).head()
|
|
Height |
Gender |
Average |
ID |
|
|
|
1101 |
173 |
M |
NaN |
1102 |
192 |
F |
NaN |
1103 |
186 |
M |
NaN |
1104 |
167 |
F |
NaN |
1105 |
159 |
F |
NaN |
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
1 2
| df.reindex(index=[1101,1203,1206,2402],method='bfill')
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1206 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
1 2
| df.reindex(index=[1101,1203,1206,2402],method='nearest')
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1206 |
S_1 |
C_2 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
1 2 3 4
| df_temp = pd.DataFrame({'Weight':np.zeros(5), 'Height':np.zeros(5), 'ID':[1101,1104,1103,1106,1102]}).set_index('ID') df_temp.reindex_like(df[0:5][['Weight','Height']])
|
|
Weight |
Height |
ID |
|
|
1101 |
0.0 |
0.0 |
1102 |
0.0 |
0.0 |
1103 |
0.0 |
0.0 |
1104 |
0.0 |
0.0 |
1105 |
NaN |
NaN |
如果df_temp单调还可以使用method参数:
1 2 3 4 5
| df_temp = pd.DataFrame({'Weight':range(5), 'Height':range(5), 'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index() df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
|
|
Weight |
Height |
ID |
|
|
1101 |
0 |
0 |
1102 |
4 |
4 |
1103 |
2 |
2 |
1104 |
1 |
1 |
1105 |
3 |
3 |
3. set_index和reset_index
先介绍set_index:从字面意思看,就是将某些列作为索引
使用表内列作为索引:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1
| df.set_index('Class').head()
|
|
School |
Gender |
Address |
Height |
Weight |
Math |
Physics |
Class |
|
|
|
|
|
|
|
C_1 |
S_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
C_1 |
S_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
C_1 |
S_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
C_1 |
S_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
C_1 |
S_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
利用append参数可以将当前索引维持不变
1
| df.set_index('Class',append=True).head()
|
|
|
School |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
Class |
|
|
|
|
|
|
|
1101 |
C_1 |
S_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
C_1 |
S_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
C_1 |
S_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
C_1 |
S_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
C_1 |
S_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
1
| df.set_index(pd.Series(range(df.shape[0]))).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
可以直接添加多级索引:
1
| df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
|
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
1.0 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
1.0 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
1.0 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
1.0 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
1.0 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
下面介绍reset_index方法,它的主要功能是将索引重置
默认状态直接恢复到自然数索引:
|
ID |
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
1 2 3 4 5 6
| L1,L2 = ['A','B','C'],['a','b','c'] mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower')) L3,L4 = ['D','E','F'],['d','e','f'] mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small')) df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2) df_temp.head()
|
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.322856 |
0.303286 |
0.510177 |
0.677119 |
0.539872 |
0.008080 |
0.155318 |
0.687972 |
0.211114 |
b |
0.788099 |
0.099715 |
0.033253 |
0.784997 |
0.822390 |
0.681439 |
0.226472 |
0.964799 |
0.622567 |
c |
0.206164 |
0.417146 |
0.169923 |
0.764059 |
0.387532 |
0.741304 |
0.156683 |
0.105008 |
0.636024 |
B |
a |
0.154204 |
0.489378 |
0.026083 |
0.023313 |
0.392803 |
0.537590 |
0.423063 |
0.892903 |
0.083580 |
b |
0.516691 |
0.648889 |
0.210534 |
0.648650 |
0.492758 |
0.013937 |
0.618279 |
0.517379 |
0.346631 |
1 2
| df_temp1 = df_temp.reset_index(level=1,col_level=1) df_temp1.head()
|
Big |
|
D |
E |
F |
Small |
Lower |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
|
|
|
|
|
|
|
|
|
|
A |
a |
0.322856 |
0.303286 |
0.510177 |
0.677119 |
0.539872 |
0.008080 |
0.155318 |
0.687972 |
0.211114 |
A |
b |
0.788099 |
0.099715 |
0.033253 |
0.784997 |
0.822390 |
0.681439 |
0.226472 |
0.964799 |
0.622567 |
A |
c |
0.206164 |
0.417146 |
0.169923 |
0.764059 |
0.387532 |
0.741304 |
0.156683 |
0.105008 |
0.636024 |
B |
a |
0.154204 |
0.489378 |
0.026083 |
0.023313 |
0.392803 |
0.537590 |
0.423063 |
0.892903 |
0.083580 |
B |
b |
0.516691 |
0.648889 |
0.210534 |
0.648650 |
0.492758 |
0.013937 |
0.618279 |
0.517379 |
0.346631 |
MultiIndex([( '', 'Lower'),
('D', 'd'),
('D', 'e'),
('D', 'f'),
('E', 'd'),
('E', 'e'),
('E', 'f'),
('F', 'd'),
('F', 'e'),
('F', 'f')],
names=['Big', 'Small'])
Index(['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'], dtype='object', name='Upper')
4. rename_axis和rename
rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
1
| df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
|
|
BigBig |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
LowerLower |
|
|
|
|
|
|
|
|
|
A |
a |
0.322856 |
0.303286 |
0.510177 |
0.677119 |
0.539872 |
0.008080 |
0.155318 |
0.687972 |
0.211114 |
b |
0.788099 |
0.099715 |
0.033253 |
0.784997 |
0.822390 |
0.681439 |
0.226472 |
0.964799 |
0.622567 |
c |
0.206164 |
0.417146 |
0.169923 |
0.764059 |
0.387532 |
0.741304 |
0.156683 |
0.105008 |
0.636024 |
B |
a |
0.154204 |
0.489378 |
0.026083 |
0.023313 |
0.392803 |
0.537590 |
0.423063 |
0.892903 |
0.083580 |
b |
0.516691 |
0.648889 |
0.210534 |
0.648650 |
0.492758 |
0.013937 |
0.618279 |
0.517379 |
0.346631 |
c |
0.471466 |
0.389771 |
0.358777 |
0.755062 |
0.813432 |
0.440888 |
0.351122 |
0.004274 |
0.268696 |
C |
a |
0.095295 |
0.117381 |
0.472925 |
0.710563 |
0.521524 |
0.486703 |
0.530199 |
0.453099 |
0.465785 |
b |
0.478185 |
0.465777 |
0.916301 |
0.135971 |
0.868624 |
0.789809 |
0.959583 |
0.689099 |
0.379456 |
c |
0.664374 |
0.197314 |
0.382233 |
0.798935 |
0.642967 |
0.933398 |
0.827343 |
0.667308 |
0.309584 |
rename方法用于修改列或者行索引标签,而不是索引名:
1
| df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()
|
|
Big |
D |
E |
F |
|
Small |
d |
changed_e |
f |
d |
changed_e |
f |
d |
changed_e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
T |
a |
0.322856 |
0.303286 |
0.510177 |
0.677119 |
0.539872 |
0.008080 |
0.155318 |
0.687972 |
0.211114 |
b |
0.788099 |
0.099715 |
0.033253 |
0.784997 |
0.822390 |
0.681439 |
0.226472 |
0.964799 |
0.622567 |
c |
0.206164 |
0.417146 |
0.169923 |
0.764059 |
0.387532 |
0.741304 |
0.156683 |
0.105008 |
0.636024 |
B |
a |
0.154204 |
0.489378 |
0.026083 |
0.023313 |
0.392803 |
0.537590 |
0.423063 |
0.892903 |
0.083580 |
b |
0.516691 |
0.648889 |
0.210534 |
0.648650 |
0.492758 |
0.013937 |
0.618279 |
0.517379 |
0.346631 |
四、常用索引型函数
1. where函数
当对条件为False的单元进行填充:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1 2
| df.where(df['Gender']=='M').head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1102 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.0 |
82.0 |
87.2 |
B+ |
1104 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
1105 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
通过这种方法筛选结果和[]操作符的结果完全一致:
1
| df.where(df['Gender']=='M').dropna().head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.0 |
82.0 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188.0 |
68.0 |
97.0 |
A- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160.0 |
53.0 |
58.8 |
A+ |
1301 |
S_1 |
C_3 |
M |
street_4 |
161.0 |
68.0 |
31.5 |
B+ |
第一个参数为布尔条件,第二个参数为填充值:
1
| df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.000000 |
63.000000 |
34.000000 |
A+ |
1102 |
0.0673597 |
0.243962 |
0.806216 |
0.220284 |
0.211720 |
0.307156 |
0.519682 |
0.400328 |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.000000 |
82.000000 |
87.200000 |
B+ |
1104 |
0.566107 |
0.431099 |
0.197058 |
0.0757116 |
0.159198 |
0.841681 |
0.193337 |
0.189899 |
1105 |
0.164871 |
0.342414 |
0.587261 |
0.821542 |
0.641076 |
0.464315 |
0.168550 |
0.502523 |
2. mask函数
mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
1
| df.mask(df['Gender']=='M').dropna().head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192.0 |
73.0 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167.0 |
81.0 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159.0 |
64.0 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176.0 |
94.0 |
63.5 |
B- |
1204 |
S_1 |
C_2 |
F |
street_5 |
162.0 |
63.0 |
33.8 |
B |
1
| df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
0.799256 |
0.821333 |
0.957415 |
0.218748 |
0.808963 |
0.176752 |
0.423925 |
0.514648 |
1102 |
S_1 |
C_1 |
F |
street_2 |
192.000000 |
73.000000 |
32.500000 |
B+ |
1103 |
0.265116 |
0.733503 |
0.464346 |
0.306176 |
0.531155 |
0.930370 |
0.371942 |
0.202589 |
1104 |
S_1 |
C_1 |
F |
street_2 |
167.000000 |
81.000000 |
80.400000 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159.000000 |
64.000000 |
84.800000 |
B+ |
3. query函数
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
1
| df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
五、重复元素处理
1. duplicated方法
该方法返回了是否重复的布尔列表
1
| df.duplicated('Class').head()
|
ID
1101 False
1102 True
1103 True
1104 True
1105 True
dtype: bool
可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为False
1
| df.duplicated('Class',keep='last').tail()
|
ID
2401 True
2402 True
2403 True
2404 True
2405 False
dtype: bool
1
| df.duplicated('Class',keep=False).head()
|
ID
1101 True
1102 True
1103 True
1104 True
1105 True
dtype: bool
2. drop_duplicates方法
从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
1
| df.drop_duplicates('Class')
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
参数与duplicate函数类似:
1
| df.drop_duplicates('Class',keep='last')
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2205 |
S_2 |
C_2 |
F |
street_7 |
183 |
76 |
85.4 |
B |
2305 |
S_2 |
C_3 |
M |
street_4 |
187 |
73 |
48.9 |
B |
2405 |
S_2 |
C_4 |
F |
street_6 |
193 |
54 |
47.6 |
B |
在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
1
| df.drop_duplicates(['School','Class'])
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
2201 |
S_2 |
C_2 |
M |
street_5 |
193 |
100 |
39.1 |
B |
2301 |
S_2 |
C_3 |
F |
street_4 |
157 |
78 |
72.3 |
B+ |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
六、抽样函数
这里的抽样函数指的就是sample函数
(a)n为样本量
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
2204 |
S_2 |
C_2 |
M |
street_1 |
175 |
74 |
47.2 |
B- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
1305 |
S_1 |
C_3 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
(b)frac为抽样比
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2201 |
S_2 |
C_2 |
M |
street_5 |
193 |
100 |
39.1 |
B |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
(c)replace为是否放回
1
| df.sample(n=df.shape[0],replace=True).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
1
| df.sample(n=35,replace=True).index.is_unique
|
False
(d)axis为抽样维度,默认为0,即抽行
1
| df.sample(n=3,axis=1).head()
|
|
Class |
Height |
School |
ID |
|
|
|
1101 |
C_1 |
173 |
S_1 |
1102 |
C_1 |
192 |
S_1 |
1103 |
C_1 |
186 |
S_1 |
1104 |
C_1 |
167 |
S_1 |
1105 |
C_1 |
159 |
S_1 |
(e)weights为样本权重,自动归一化
1
| df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
2104 |
S_2 |
C_1 |
F |
street_5 |
159 |
97 |
72.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1 2
| df.sample(n=3,weights=df['Math']).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
2403 |
S_2 |
C_4 |
F |
street_6 |
158 |
60 |
59.7 |
B+ |
七、问题与练习
1. 问题
【问题一】 如何更改列或行的顺序?
【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
【问题三】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
【问题四】 索引设定中的所有方法分别适用于哪些场合?
【问题五】 如何快速找出某一列的缺失值所在索引?
2. 练习
【练习一】 现有一份关于UFO的数据集,请解决下列问题:
1
| pd.read_csv('data/UFO.csv').head()
|
|
datetime |
shape |
duration (seconds) |
latitude |
longitude |
0 |
10/10/1949 20:30 |
cylinder |
2700.0 |
29.883056 |
-97.941111 |
1 |
10/10/1949 21:00 |
light |
7200.0 |
29.384210 |
-98.581082 |
2 |
10/10/1955 17:00 |
circle |
20.0 |
53.200000 |
-2.916667 |
3 |
10/10/1956 21:00 |
circle |
20.0 |
28.978333 |
-96.645833 |
4 |
10/10/1960 20:00 |
light |
900.0 |
21.418056 |
-157.803611 |
(a)在所有被观测时间超过60s的时间中,哪个形状最多?
(b)对经纬度进行划分:-180°至180°以30°为一个划分,-90°至90°以18°为一个划分,请问哪个区域中报告的UFO事件数量最多?
【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
1
| pd.read_csv('data/Pokemon.csv').head()
|
|
# |
Name |
Type 1 |
Type 2 |
Total |
HP |
Attack |
Defense |
Sp. Atk |
Sp. Def |
Speed |
Generation |
Legendary |
0 |
1 |
Bulbasaur |
Grass |
Poison |
318 |
45 |
49 |
49 |
65 |
65 |
45 |
1 |
False |
1 |
2 |
Ivysaur |
Grass |
Poison |
405 |
60 |
62 |
63 |
80 |
80 |
60 |
1 |
False |
2 |
3 |
Venusaur |
Grass |
Poison |
525 |
80 |
82 |
83 |
100 |
100 |
80 |
1 |
False |
3 |
3 |
VenusaurMega Venusaur |
Grass |
Poison |
625 |
80 |
100 |
123 |
122 |
120 |
80 |
1 |
False |
4 |
4 |
Charmander |
Fire |
NaN |
309 |
39 |
52 |
43 |
60 |
50 |
65 |
1 |
False |
(a)双属性的Pokemon占总体比例的多少?
(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?
(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?
(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?
(e)哪个属性(只考虑第一属性)的神兽比例最高?该属性神兽的种族值也是最高的吗?