1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
   | 
  import numpy as np
 
  def  perceptron(X, y, eta=1, max_step=100000): 	""" 	X :   feature array contain intercept 	y:    lables  0 or 1     eta:   step length 	max_step: maximum iterations
  	"""
 
  	n, d = X.shape   	w = np.zeros(d)   	step = 0  	row = 0  	while step < max_step:   		if np.sign(X[row, :].dot(w) * (y[row]-0.5)) <=0:               step += 1               w += eta * y[row] * X[row, :]   		if row == n:              row = 0 		if np.sum((X.dot(w) == y)) == n:  			break 	return w 
 
  import matplotlib.pyplot as plt import pandas as pd from sklearn import tree import numpy as np
  data = pd.read_csv('classfication-regression.csv') data_coloums_name = data.columns.tolist()
 
 
 
  def Tree_test():
      data_x = data[['H-In', 'coord', 'O_v', 'bi-HCOO', 'H_2COO', 'CH_2O']]     data_y = data['ts2-c']     clf = tree.DecisionTreeClassifier(max_depth=1)     clf = clf.fit(data_x, data_y)
      import graphviz     dot_data = tree.export_graphviz(clf, out_file=None,                                     feature_names=['H-In', 'coord', 'O_v', 'bi-HCOO', 'H_2COO', 'CH_2O'],                                     class_names=['TS3', 'TS2'],                                     filled=True, rounded=True,                                     special_characters=True)     graph = graphviz.Source(dot_data)     graph.render("ts2-c")     graph.view()
 
 
  |