[TOC]

互斥锁

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。

互斥锁为资源引入一个状态:锁定/非锁定

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

1
2
3
4
5
6
7
8
9
import threading
# 创建锁
mutex = threading.Lock()

# 锁定
mutex.acquire()

# 释放
mutex.release()

注意:

  • 如果这个锁之前是没有上锁的,那么acquire不会堵塞
  • 如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止

使用互斥锁完成2个线程对同一个全局变量各加100万次的操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import threading
import time

g_num = 0

def test1(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁

print("---test1---g_num=%d"%g_num)

def test2(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁

print("---test2---g_num=%d"%g_num)

# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()

# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()

p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()

# 等待计算完成
while len(threading.enumerate()) > 6:
print(len(threading.enumerate()))
time.sleep(1)

print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
7
---test2---g_num=1843239
---test1---g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000

上锁解锁过程

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结

锁的好处:

  • 确保了某段关键代码只能由一个线程从头到尾完整地执行
    锁的坏处:

  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了

  • 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁
1
print(len(threading.enumerate()))
5
1
print(threading.enumerate())
[<_MainThread(MainThread, started 27080)>, <Thread(Thread-4, started daemon 5604)>, <Heartbeat(Thread-5, started daemon 11304)>, <HistorySavingThread(IPythonHistorySavingThread, started 25952)>, <ParentPollerWindows(Thread-3, started daemon 27328)>]